Elafibranor restricts lipogenic and inflammatory responses in a human skin stem cell-derived model of NASH

Elafibranor 可抑制人类皮肤干细胞衍生的 NASH 模型中的脂肪生成和炎症反应

阅读:5
作者:Joost Boeckmans, Karolien Buyl, Alessandra Natale, Valerie Vandenbempt, Steven Branson, Veerle De Boe, Vera Rogiers, Joery De Kock, Robim M Rodrigues, Tamara Vanhaecke

Abstract

Non-alcoholic steatohepatitis (NASH) is characterized by hepatocellular steatosis with concomitant hepatic inflammation. Despite its pandemic proportions, no anti-NASH drugs have been approved yet. This is partially because drug development is decelerated due to the lack of adequate tools to assess the efficacy of potential new drug candidates. The present study describes the development and application of a new preclinical model for NASH using hepatic cells generated from human skin-derived precursors. Exposure of these cells to lipogenic (insulin, glucose, fatty acids) and pro-inflammatory factors (IL-1β, TNF-α, TGF-β) resulted in a characteristic NASH response, as indicated by intracellular lipid accumulation, modulation of NASH-specific gene expression, increased caspase-3/7 activity and the expression and/or secretion of inflammatory markers, including CCL2, CCL5, CCL7, CCL8, CXCL5, CXCL8, IL1a, IL6 and IL11. The human relevance of the proposed NASH model was verified by transcriptomics analyses that revealed commonly modulated genes and the identification of the same gene classes between the in vitro system and patients suffering from NASH. The application potential of this in vitro model was demonstrated by testing elafibranor, a promising anti-NASH compound currently under clinical phase III trial evaluation. Elafibranor attenuated in vitro key features of NASH, and dramatically lowered lipid load as well as the expression and secretion of inflammatory chemokines, which in vivo are responsible for the recruitment of immune cells. This reduction in inflammatory response was NFκB-mediated. In summary, this human-relevant, in vitro system proved to be a sensitive testing tool for the investigation of novel anti-NASH compounds.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。