BRG1 enhances porcine iPSC pluripotency through WNT/β-catenin and autophagy pathways

BRG1 通过 WNT/β-catenin 和自噬途径增强猪 iPSC 多能性

阅读:7
作者:Xuan Ren, Jianchun Xu, Qingsong Xue, Yi Tong, Tairan Xu, Jinli Wang, Ting Yang, Yuan Chen, Deshun Shi, Xiangping Li

Abstract

Brahma-related gene 1 (BRG1) enhances the pluripotency of embryonic and adult stem cells, however, its effect on induced pluripotent stem cell (iPSC) pluripotency has not been reported. The aim of this study was to investigate the effect of BRG1 on porcine iPSC pluripotency and its mechanisms. The effect of BRG1 on porcine iPSC pluripotency was explored by positive and negative control it. The mechanism was investigated by regulating the WNT/β-catenin signaling pathway and autophagy flux. The results showed that inhibition of BRG1 decreased pluripotency-related gene expression in porcine iPSCs; while its overexpression had the opposite effect, the expression of WNT/β-catenin signaling pathway- and autophagy-related genes was significantly up-regulated (P < 0.05) in the BRG1 overexpressed group when compared to the control group. Inhibited pluripotency-related gene or protein expression, decreased autophagy flux, and increased mitochondrial length and mitochondrial membrane potential (MMP) were observed when porcine iPSCs were treated with the WNT/β-catenin signaling pathway inhibitor IWR-1. Forced BRG1 expression restored porcine iPSC pluripotency, increased autophagy flux, shortened mitochondria, and reduced MMP. Lastly, Compound C was used to activate porcine iPSC autophagy, and it was found that the expression of BRG1 and β-catenin increased, and pluripotency-related gene and protein expression was up-regulated; these effects were reversed when the BRG1 inhibitor PFI-3 and IWR-1 were added. These results suggested that BRG1 enhanced the pluripotency of porcine iPSCs through WNT/β-catenin and autophagy pathways.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。