Significance
Wound healing complications occur in up to 60% of patients undergoing cleft palate repair where an oronasal fistula (ONF) develops, allowing food and air to escape from the nose. Using a mouse model of palate mucosal injury, we explored the role of immune cell infiltration during ONF formation. Delivery of FTY720, an immunomodulatory drug, using a nanofiber scaffold into the ONF was able to attract anti-inflammatory immune cells following injury that enhanced the reepithelization process. ONF healing at day 5 following FTY720 delivery was associated with altered inflammatory and epithelial transcriptional gene expression, increased anti-inflammatory immune cell infiltration, and increased proliferation. These findings demonstrate the potential efficacy of immunoregenerative therapies to improve oral cavity wound healing.
Statement of significance
Wound healing complications occur in up to 60% of patients undergoing cleft palate repair where an oronasal fistula (ONF) develops, allowing food and air to escape from the nose. Using a mouse model of palate mucosal injury, we explored the role of immune cell infiltration during ONF formation. Delivery of FTY720, an immunomodulatory drug, using a nanofiber scaffold into the ONF was able to attract anti-inflammatory immune cells following injury that enhanced the reepithelization process. ONF healing at day 5 following FTY720 delivery was associated with altered inflammatory and epithelial transcriptional gene expression, increased anti-inflammatory immune cell infiltration, and increased proliferation. These findings demonstrate the potential efficacy of immunoregenerative therapies to improve oral cavity wound healing.
