PDK4 rescues high-glucose-induced senescent fibroblasts and promotes diabetic wound healing through enhancing glycolysis and regulating YAP and JNK pathway

PDK4通过增强糖酵解和调节YAP和JNK通路拯救高糖诱导的衰老成纤维细胞并促进糖尿病伤口愈合

阅读:9
作者:Zhouji Ma #, Youjun Ding #, Xiaofeng Ding #, Haining Mou, Ran Mo, Qian Tan

Abstract

During the process of wound healing, fibroblasts migrate to the wound site and perform essential functions in promoting cell proliferation, as well as synthesizing and secreting the extracellular matrix (ECM). However, in diabetic wounds, senescent fibroblasts exhibit impaired proliferative capacity and fail to synthesize essential ECM components. Pyruvate dehydrogenase kinase 4 (PDK4), a key enzyme regulating energy metabolism, has been implicated in modulating cellular senescence and fibroblast function. However, its specific role in diabetic wounds remains poorly understood. In this study, we conducted a series of in vivo and in vitro experiments using STZ-induced diabetic mice and human dermal fibroblasts. We evaluated cellular senescence markers, including SA-β-gal, P53, P16, P21, and PAI-1, as well as senescence-associated secretory phenotype (SASP) factors. Finally, we observed that PDK4 increased in normal wound healing, but its expression was insufficient in diabetic wounds. Significantly, the overexpression of PDK4 demonstrated the potential to accelerate diabetic wound healing and improve the senescence phenotype both in vivo and in vitro. Furthermore, our study elucidated the underlying mechanism by which PDK4 improved the senescent phenotype through the enhancement of glycolysis and regulation of YAP and JNK pathway. The effect was dependent on metabolic reprogramming and subsequent reduction of reactive oxygen species (ROS), which was mediated by PDK4. Overall, our findings highlight the potential of PDK4 as a promising therapeutic target for addressing diabetic wounds.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。