Metabolic perturbations mediated by propionyl-CoA accumulation in organs of mouse model of propionic acidemia

丙酸血症小鼠模型器官中丙酰辅酶 A 积累引起的代谢紊乱

阅读:7
作者:Wentao He, You Wang, Erik J Xie, Michael A Barry, Guo-Fang Zhang

Abstract

Propionic acidemia (PA) is an autosomal recessive metabolic disorder after gene encoding propionyl-CoA carboxylase, Pcca or Pccb, is mutated. This genetic disorder could develop various complications which are ascribed to dysregulated propionyl-CoA metabolism in organs. However, the effect of attenuated PCC on propionyl-CoA metabolism in different organs remains to be fully understood. We investigated metabolic perturbations in organs of Pcca-/-(A138T) mice (a mouse model of PA) under chow diet and acute administration of [13C3]propionate to gain insight into pathological mechanisms of PA. With chow diet, the metabolic alteration is organ dependent. l-Carnitine reduction induced by propionylcarnitine accumulation only occurs in lung and liver of Pcca-/- (A138T) mice. [13C3]Propionate tracing data demonstrated that PCC activity was dramatically reduced in Pcca-/-(A138T) brain, lung, liver, kidney, and adipose tissues, but not significantly changed in Pcca-/-(A138T) muscles (heart and skeletal muscles) and pancreas, which was largely supported by PCCA expression data. The largest expansion of propionylcarnitine in Pcca-/-(A138T) heart after acute administration of propionate indicated the vulnerability of heart to high circulating propionate. The overwhelming propionate in blood also stimulated ketone production from the increased fatty acid oxidation in Pcca-/-(A138T) liver by lowering malonyl-CoA, which has been observed in cases where metabolic decompensation occurs in PA patients. This work shed light on organ-specific metabolic alternations under varying severities of PA.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。