Development of Human CBF1-Targeting Single-Stranded DNA Aptamers with Antiangiogenic Activity In Vitro

体外开发具有抗血管生成活性的人类 CBF1 靶向单链 DNA 适体

阅读:7
作者:Mari Tezuka-Kagajo, Masashi Maekawa, Atsushi Ogawa, Yoshiko Hatta, Eiichi Ishii, Mariko Eguchi, Shigeki Higashiyama

Abstract

C promoter binding factor 1 (CBF1) (alias RBPJ) is a critical transcription factor involved in Notch signaling. The activation of Notch signaling through CBF1 maintains the angiostatic state of endothelial cells suppressing angiogenesis, that is, the formation of new blood vessels. Vascular endothelial growth factor (VEGF) induces angiogenesis by promoting the proteasomal degradation of CBF1, in addition to endothelial cell proliferation. To date, angiogenic inhibitors targeting VEGF have been successfully used in clinics for cancer and age-related macular degeneration. Most antiangiogenic drugs, however, only target VEGF or VEGF receptors. In this study, to expand the repertoire of antiangiogenic therapeutics, we developed 15 single-stranded deoxyribonucleic acid (ssDNA) aptamers capable of binding to CBF1 with high affinity (Kd; 10-300 nM). To this end, systematic evolution of ligands by the exponential enrichment (SELEX) method was applied. One of the CBF1-binding ssDNA aptamers, Apt-3, inhibited angiogenesis through the activation of Notch signaling in vitro. We found that Apt-3 directly interacted with the LAG1 domain of CBF1. We suggest that the Apt-3 ssDNA aptamer may contribute to the development of a novel angiogenic inhibitor, which does not target VEGF.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。