Constitutively active NDR1-PIF kinase functions independent of MST1 and hMOB1 signalling

组成性活性 NDR1-PIF 激酶功能独立于 MST1 和 hMOB1 信号传导

阅读:4
作者:Dorthe Cook, Lily Y Hoa, Valenti Gomez, Marta Gomez, Alexander Hergovich

Abstract

The human MST1/hMOB1/NDR1 tumour suppressor cascade regulates important cellular processes, such as centrosome duplication. hMOB1/NDR1 complex formation appears to be essential for NDR1 activation by autophosphorylation on Ser281 and hydrophobic motif (HM) phosphorylation at Thr444 by MST1. To dissect these mechanistic relationships in MST1/hMOB1/NDR signalling, we designed NDR1 variants carrying modifications that mimic HM phosphorylation and/or abolish hMOB1/NDR1 interactions. Significantly, the analyses of these variants revealed that NDR1-PIF, an NDR1 variant containing the PRK2 hydrophobic motif, remains hyperactive independent of hMOB1/NDR1-PIF complex formation. In contrast, as reported for the T444A phospho-acceptor mutant, NDR1 versions carrying single phospho-mimicking mutations at the HM phosphorylation site, namely T444D or T444E, do not display increased kinase activities. Collectively, these observations suggest that in cells Thr444 phosphorylation by MST1 depends on the hMOB1/NDR1 association, while Ser281 autophosphorylation of NDR1 can occur independently. By testing centrosome-targeted NDR1 variants in NDR1- or MST1-depleted cells, we further observed that centrosome-enriched NDR1-PIF requires neither hMOB1 binding nor MST1 signalling to function in centrosome overduplication. Taken together, our biochemical and cell biological characterisation of NDR1 versions provides novel unexpected insights into the regulatory mechanisms of NDR1 and NDR1's role in centrosome duplication.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。