MicroRNA-30c-2-3p negatively regulates NF-κB signaling and cell cycle progression through downregulation of TRADD and CCNE1 in breast cancer

MicroRNA-30c-2-3p 通过下调乳腺癌中的 TRADD 和 CCNE1 来负向调节 NF-κB 信号转导和细胞周期进程

阅读:4
作者:Kirti Shukla, Ashwini Kumar Sharma, Aoife Ward, Rainer Will, Thomas Hielscher, Aleksandra Balwierz, Christian Breunig, Ewald Münstermann, Rainer König, Ioanna Keklikoglou, Stefan Wiemann

Abstract

Nuclear Factor kappa B (NF-κB) signaling is frequently deregulated in a variety of cancers and is constitutively active in estrogen receptor negative (ER-) breast cancer subtypes. These molecular subtypes of breast cancer are associated with poor overall survival. We focused on mechanisms of NF-κB regulation by microRNAs (miRNAs), which regulate eukaryotic gene expression at the post-transcriptional level. In a previous genome-wide miRNA screen, we had identified miR-30c-2-3p as one of the strongest negative regulators of NF-κB signaling. Here we have uncovered the underlying molecular mechanisms and its consequences in breast cancer. In vitro results show that miR-30c-2-3p directly targets both TNFRSF1A-associated via death domain (TRADD), an adaptor protein of the TNFR/NF-κB signaling pathway, and the cell cycle protein Cyclin E1 (CCNE1). Ectopic expression of miR-30c-2-3p downregulated essential cytokines IL8, IL6, CXCL1, and reduced cell proliferation as well as invasion in MDA-MB-231 breast cancer cells. RNA interference (RNAi) induced silencing of TRADD phenocopied the effects on invasion and cytokine expression caused by miR-30c-2-3p, while inhibition of CCNE1 phenocopied the effects on cell proliferation. We further confirmed the tumor suppressive role of this miRNA using a dataset of 781 breast tumors, where higher expression was associated with better survival in breast cancer patients. In summary we have elucidated the mechanism by which miR-30c-2-3p negatively regulates NF-κB signaling and cell cycle progression in breast cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。