Development of a toxicogenomics signature for genotoxicity using a dose-optimization and informatics strategy in human cells

使用剂量优化和信息学策略在人体细胞中开发基因毒性的毒理基因组学特征

阅读:4
作者:Heng-Hong Li, Daniel R Hyduke, Renxiang Chen, Pamela Heard, Carole L Yauk, Jiri Aubrecht, Albert J Fornace Jr

Abstract

The development of in vitro molecular biomarkers to accurately predict toxicological effects has become a priority to advance testing strategies for human health risk assessment. The application of in vitro transcriptomic biomarkers promises increased throughput as well as a reduction in animal use. However, the existing protocols for predictive transcriptional signatures do not establish appropriate guidelines for dose selection or account for the fact that toxic agents may have pleiotropic effects. Therefore, comparison of transcriptome profiles across agents and studies has been difficult. Here we present a dataset of transcriptional profiles for TK6 cells exposed to a battery of well-characterized genotoxic and nongenotoxic chemicals. The experimental conditions applied a new dose optimization protocol that was based on evaluating expression changes in several well-characterized stress-response genes using quantitative real-time PCR in preliminary dose-finding studies. The subsequent microarray-based transcriptomic analyses at the optimized dose revealed responses to the test chemicals that were typically complex, often exhibiting substantial overlap in the transcriptional responses between a variety of the agents making analysis challenging. Using the nearest shrunken centroids method we identified a panel of 65 genes that could accurately classify toxicants as genotoxic or nongenotoxic. To validate the 65-gene panel as a genomic biomarker of genotoxicity, the gene expression profiles of an additional three well-characterized model agents were analyzed and a case study demonstrating the practical application of this genomic biomarker-based approach in risk assessment was performed to demonstrate its utility in genotoxicity risk assessment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。