Identification of a Clinically Relevant Signature for Early Progression in KRAS-Driven Lung Adenocarcinoma

鉴定 KRAS 驱动的肺腺癌早期进展的临床相关特征

阅读:5
作者:Sarah Neidler, Björn Kruspig, Kay Hewit, Tiziana Monteverde, Katarina Gyuraszova, Attila Braun, William Clark, Daniel James, Ann Hedley, Bernhard Nieswandt, Emma Shanks, Craig Dick, Daniel J Murphy

Abstract

Inducible genetically defined mouse models of cancer uniquely facilitate the investigation of early events in cancer progression, however, there are valid concerns about the ability of such models to faithfully recapitulate human disease. We developed an inducible mouse model of progressive lung adenocarcinoma (LuAd) that combines sporadic activation of oncogenic KRasG12D with modest overexpression of c-MYC (KM model). Histological examination revealed a highly reproducible spontaneous transition from low-grade adenocarcinoma to locally invasive adenocarcinoma within 6 weeks of oncogene activation. Laser-capture microdissection coupled with RNA-SEQ (ribonucleic acid sequencing) was employed to determine transcriptional changes associated with tumour progression. Upregulated genes were triaged for relevance to human LuAd using datasets from Oncomine and cBioportal. Selected genes were validated by RNAi screening in human lung cancer cell lines and examined for association with lung cancer patient overall survival using KMplot.com. Depletion of progression-associated genes resulted in pronounced viability and/or cell migration defects in human lung cancer cells. Progression-associated genes moreover exhibited strong associations with overall survival, specifically in human lung adenocarcinoma, but not in squamous cell carcinoma. The KM mouse model faithfully recapitulates key molecular events in human adenocarcinoma of the lung and is a useful tool for mechanistic interrogation of KRAS-driven LuAd progression.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。