Isoorientin Affects Markers of Alzheimer's Disease via Effects on the Oral and Gut Microbiota in APP/PS1 Mice

异荭草黄素通过影响 APP/PS1 小鼠的口腔和肠道微生物群来影响阿尔茨海默病的标志物

阅读:4
作者:Zhongbao Zhang, Xiaoqin Tan, Xiaorong Sun, Jianhua Wei, Qing X Li, Zhongyi Wu

Background

There is growing evidence of strong associations between the pathogenesis of Alzheimer's disease (AD) and dysbiotic oral and gut microbiota. Recent studies demonstrated that isoorientin (ISO) is anti-inflammatory and alleviates markers of AD, which were hypothesized to be mediated by the oral and gut microbiota. Objectives: We studied the effects of oral administration of ISO on AD-related markers and the oral and gut microbiota in mice.

Conclusions

The microbiota-gut-brain axis is a potential mechanism by which ISO reduces AD-related markers in AP mice.

Methods

Eight-month-old amyloid precursor protein/presenilin-1 (AP) transgenic male mice were randomly allocated to 3 groups of 15 mice each: vehicle (AP) alone or with a low dose of ISO (AP + ISO-L; 25 mg/kg) or a high dose of ISO (AP + ISO-H; 50 mg/kg). Age-matched wild-type (WT) C57BL/6 male littermates were used as controls. The 4 groups were treated intragastrically with ISO or sterilized ultrapure water for 2 months. AD-related markers in the brain, serum, colon, and liver were analyzed with immunohistochemical and histochemical staining, Western blotting, and ELISA. Oral and gut microbiotas were analyzed using 16S ribosomal RNA gene sequencing.

Results

The high-dose ISO treatment significantly decreased amyloid beta 42-positive deposition by 38.1% and 45.2% in the cortex and hippocampus, respectively, of AP mice (P < 0.05). Compared with the AP group, both ISO treatments reduced brain phospho-Tau, phosphor-p65, phosphor-inhibitor of NF-κB, and brain and serum LPS and TNF-α by 17.9%-72.5% and increased brain and serum IL-4 and IL-10 by 130%-210% in the AP + ISO-L and AP + ISO-H groups (P < 0.05). Abundances of 26, 25, and 23 microbial taxa in oral, fecal and cecal samples, respectively, were increased in both the AP + ISO-L and AP + ISO-H groups relative to the AP group [linear discriminant analysis (LDA) >3.0; P < 0.05]. Gram-negative bacteria, Alteromonas, Campylobacterales, and uncultured Bacteroidales bacterium were positively correlated (rho = 0.28-0.59; P < 0.05) with the LPS levels and responses of inflammatory cytokines. Conclusions: The microbiota-gut-brain axis is a potential mechanism by which ISO reduces AD-related markers in AP mice.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。