Responses of bladder smooth muscle to the stretch go through extracellular signal-regulated kinase (ERK)/p90 ribosomal S6 protein kinase (p90RSK)/Nuclear factor-κB (NF-κB) Pathway

膀胱平滑肌对拉伸的反应通过细胞外信号调节激酶 (ERK)/p90 核糖体 S6 蛋白激酶 (p90RSK)/核因子-κB (NF-κB) 通路

阅读:5
作者:Yaohui Li, Minke He, Wenyao Lin, Zhuoyi Xiang, Jiaqi Huang, Peirong Xu, Yi Shi, Hang Wang

Aims

The present study was designed to study changes and its potential mechanisms in human bladder smooth muscle subjected to stretch.

Conclusions

Continuous stretch increases expressions of contractile phenotypic proteins and promotes the polymerization of F-actin. This process partially goes through ERK/p90RSK/NF-κB pathway.

Methods

Bioinformatics analyses including differential expression analysis, overrepresentation enrichment analysis, principal component analysis, and weighted gene coexpression network analysis were used to analyze a microarray dataset (GSE47080) of partial bladder outlet obstruction (pBOO) in rat to find the potential changes of gene expressions. Bladder from pBOO model and human bladder smooth muscle cells (HBSMCs) subjected to sustained prolonged stretch were collected for Western blot analysis, real-time polymerase chain reaction, and fluorescence analysis to verify the changes of gene expressions and preliminarily study the potential role of signaling pathway regulation in treatment of pBOO.

Results

The bioinformatics analysis showed that chronic obstruction activated mitogen-activated protein kinase pathway and changed cytoskeleton structure in bladder smooth muscle. In in vivo experiments in mice, pBOO was verified by cystometry. Partial BOO activated the extracellular signal-regulated kinase (ERK)/p90 ribosomal S6 protein kinase (p90RSK)/nuclear factor-κB (NF-κB) signaling pathway in DM. The messenger RNA (mRNA) expressions of contractile phenotypic proteins increased after pBOO. In in vitro experiments of HBSMCs, mechanical stretch activated ERK/p90RSK/NF-κB in HBSMCs in a time-dependent manner. The mRNA expressions of α-smooth muscle actin and SM22 also increased and filamentous actin (F-actin) polymerization was enhanced as well. Inhibition of ERK/p90RSK/NF-κB pathway reversed mechanical stretch-induced changes of contractile phenotypic expression and F-action polymerization. Conclusions: Continuous stretch increases expressions of contractile phenotypic proteins and promotes the polymerization of F-actin. This process partially goes through ERK/p90RSK/NF-κB pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。