Genomic distribution of signal transducer and activator of transcription (STAT) family in colorectal cancer

信号转导和转录激活因子 (STAT) 家族在结直肠癌中的基因组分布

阅读:3
作者:Yanping Hu #, Yifen Shen #, Yang Zhao #, Ying Tang, Chao Liu, Yongchun Gu, Tao Yang, Yihang Shen

Abstract

JAK/STAT pathway has been widely acknowledged in the development of human cancers. However, the role of different phosphorylated STAT proteins translocating into nucleus in transcription activation of target genes is not fully understood. In present research, ChIP-seq was carried on to investigate the genome-wide distribution of the activated STAT1, STAT2, STAT3, STAT5 and STAT6 in colorectal cancer HCT-116 cells. Our observations indicated that the homodimers rather than heterodimers of STAT protein predominantly occupied on genomic DNA. STAT3 accounted for the largest proportion among all STAT proteins HCT-116 cells. Furthermore, the biased binding motif targeted by different STAT homodimers suggested the distinct biological functions. Here, we noticed that NR5A2 was a specific co-activator of STAT3 by DNA motif analysis. Co-IP assay determined that NR5A2 indeed interacted with STAT3 homodimer rather than other homodimers or heterodimers. NR5A2 knockdown resulted in a reduced binding affinity of STAT3 homodimer in the original regions. Taken together, we characterize the genome-wide landscape of activated STAT proteins, and reveal the differences of binding patterns as well as the target genes and associated functions between homodimer and heterodimer of STAT proteins in HCT-116 cells. We also present some new findings and possible mechanisms regarding the role of NR5A2 on STAT3 in CRC. Our findings may provide new insights into the design of STAT inhibitors to treat CRC and other diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。