Increased palmitoylation improves estrogen receptor alpha-dependent hippocampal synaptic deficits in a mouse model of synucleinopathy

增加棕榈酰化可改善突触核蛋白病小鼠模型中雌激素受体 α 依赖性海马突触缺陷

阅读:3
作者:Tim E Moors, Shaomin Li, Thomas D McCaffery, Gary P H Ho, Pascal A Bechade, Luu N Pham, Maria Ericsson, Silke Nuber

Abstract

Parkinson's disease (PD) is characterized by conversion of soluble α-synuclein (αS) into intraneuronal aggregates and degeneration of neurons and neuronal processes. Indications that women with early-stage PD display milder neurodegenerative features suggest that female sex partially protects against αS pathology. We previously reported that female sex and estradiol improved αS homeostasis and PD-like phenotypes in E46K-amplified (3K) αS mice. Here, we aimed to further dissect mechanisms that drive this sex dimorphism early in disease. We observed that synaptic abnormalities were delayed in females and improved by estradiol, mediated by local estrogen receptor alpha (ERα). Aberrant ERα distribution in 3K compared to wild-type mice was paired with its decreased palmitoylation. Treatment with ML348, a de-palmitoylation inhibitor, increased ERα availability and soluble αS homeostasis, ameliorating synaptic plasticity and cognitive and motor phenotypes. Our finding that sex differences in early-disease αS-induced synaptic impairment in 3KL mice are in part mediated by palmitoylated ERα may have functional and pathogenic implications for clinical PD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。