Inactivation of Rab27B-dependent signaling pathway by calycosin inhibits migration and invasion of ER-negative breast cancer cells

毛蕊异黄酮抑制Rab27B依赖性信号通路抑制ER阴性乳腺癌细胞迁移和侵袭

阅读:6
作者:Guoli Wu, Mimi Niu, Jian Qin, Yafei Wang, Jing Tian

Abstract

Previous studies report the upregulation of the secretory Rab27B small GTPase in human breast cancer, which could promote invasive growth and metastasis in estrogen receptor (ER)-positive breast cancer cells. However, there is limited evidence for its role in ER-negative breast cancer, along with the signaling pathways. Consistent with previous studies, we here confirmed that Rab27B is upregulated in breast tumor tissue in comparison with normal breast tissue. In addition, in ER-negative breast cancer cell line MDA-MB-231, when the levels of Rab27B expression were further elevated by transduction with recombinant lentivirus vector, migration and invasion assays demonstrated that cell migration and invasion was significantly stimulated. Moreover, Rab27B overexpression increased levels of β-catenin, followed by upregulation of vascular endothelial growth factor (VEGF). Our findings reveal a key function for the Rab27B-mediated modulation of β-catenin and VEGF in ER-negative breast cancer cell metastasis. Notably, the suppressed expression of Rab27B, β-catenin and VEGF was found in calycosin-treated MDA-MB-231 cells, accompanied with decreased invasive and migratory potential of these cells. What's more, these inhibitory effects of calycosin were all attenuated by Rab27B overexpression. The results demonstrated that calycosin-induced inhibition of migration and invasion in ER-negative breast cancer cells may be associated with the inactivation of Rab27B-dependent signaling, and suggest that antagonism of this pathway by calycosin may offer alternative therapeutic strategy for the aggressive breast cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。