Silencing of YTHDF1 Attenuates Cerebral Stroke by Inducing PTEN Degradation and Activating the PTEN/AKT/mTOR Pathway

沉默 YTHDF1 可诱导 PTEN 降解并激活 PTEN/AKT/mTOR 通路,从而减轻脑卒中

阅读:14
作者:Xiaohong Li, Peng An, Fang Han, Meihong Yu, Zhenfei Yu, Ying Li

Abstract

N6-methyladenosine (m6A) methylation regulates pathological processes of cerebral stroke, which can lead to disability and death. Herein, we explored the role of a m6A "reader" YTHDF1 in stroke. MCAO (middle cerebral artery occlusion) rat model and hypoxia/reoxygenation (H/R)-induced neurocytes cell model were established. TTC staining assay assessed the infarction area and TUNEL assay analyzed apoptosis. Neurological score was analyzed to evaluate the brain function. Cell counting kit-8, LDH release, and flow cytometry assessed cellular proliferation, cell death, and cell apoptosis in vitro. The expression of YTHDF1, PTEN, and the factors in the PI3K/AKT/mTOR pathway was measured using western blot. The interaction between YTHDF1 and PTEN was confirmed luciferase assay and RNA immunoprecipitation assay. The results indicated that YTHDF1 was upregulated in the brain tissues of MCAO mice and H/R-treated cells. Knockdown of YTHDF1 inhibited the infarct area, neuron damage, and apoptosis. Additionally, YTHDF1 depletion promoted viability and inhibited apoptosis of H/R-treated cells. Moreover, YTHDF1 inactivated the PI3K/AKT/mTOR pathway. Mechanistically, YTHDF1 binds to PTEN to increase PTEN mRNA stability. Overexpressing PTEN rescued the effects of YTHDF1 depletion on cell viability and apoptosis. In conclusion, silencing of YTHDF1 decelerated the progression of cerebral stroke through promoting PTEN degradation and activating the PTEN/AKT/mTOR pathway, suggesting that YTHDF1 has the potential to be a therapeutic target for stroke.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。