Transcriptome sequencing profiling identifies miRNA-331-3p as an osteoblast-specific miRNA in infected bone nonunion

转录组测序分析表明 miRNA-331-3p 是感染性骨不愈合中成骨细胞特异性 miRNA

阅读:8
作者:Yang Zhang, Xuping Wang, Xiaowen Huang, Lifeng Shen, Li Zhang, Dan Shou, Xiaohui Fan

Abstract

Bone nonunion caused by bacterial infection accounts for bone fractures, bone trauma and bone transplantation surgeries. Severe consequences include delayed unions and amputation and result in functional limitations, work disability, and poor quality of life. However, the mechanism of bone nonunion remains unknown. In this study, we aimed to screen the miRNA biomarkers of bacterial bone infection and investigated whether miRNAs regulate the osteoblasts and thus contribute to bone nonunion. We established a miRNA-mRNA network based on high-throughput RNA sequencing to compare the model rabbits infected with Staphylococcus aureus with the control rabbits. After validation experiments, miRNA-331-3p and fibroblast growth factor 23 (FGF23) were found to be inversely correlated with the pathways of osteoblast mineralization and pathology of infected bone nonunion. In in vitro experiments, miRNA-331-3p was downregulated and FGF23 was upregulated in lipopolysaccharide (LPS)-induced mouse calvarial osteoblasts. Further studies of the mechanism showed that mutated of putative miRNA-331-3p can bind to FGF23 3'-untranslated region sites. MiRNA-331-3p acted as an osteoblast mineralization promoter by directly targeting FGF23. Downregulation of miRNA-331-3p led to inhibition of osteoblast mineralization by regulating the DKK1/β-catenin mediated signaling. Thus, we established an improved animal model and identified new bone-related biomarkers in the infected bone nonunion. The miRNA-331-3p biomarker was demonstrated to regulate osteoblast mineralization by targeting FGF23. The novel mechanism can be used as potential diagnostic biomarkers and therapeutic targets in the infected bone nonunion and other inflammatory bone disorders.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。