High proton conductivity within the 'Norby gap' by stabilizing a perovskite with disordered intrinsic oxygen vacancies

通过稳定具有无序内在氧空位的钙钛矿,在“诺比间隙”内实现高质子电导率

阅读:6
作者:Kei Saito, Masatomo Yashima

Abstract

Proton conductors are attractive materials with a wide range of potential applications such as proton-conducting fuel cells (PCFCs). The conventional strategy to enhance the proton conductivity is acceptor doping into oxides without oxygen vacancies. However, the acceptor doping results in proton trapping near dopants, leading to the high apparent activation energy and low proton conductivity at intermediate and low temperatures. The hypothetical cubic perovskite BaScO2.5 may have intrinsic oxygen vacancies without the acceptor doping. Herein, we report that the cubic perovskite-type BaSc0.8Mo0.2O2.8 stabilized by Mo donor-doing into BaScO2.5 exhibits high proton conductivity within the 'Norby gap' (e.g., 0.01 S cm-1 at 320 °C) and high chemical stability under oxidizing, reducing and CO2 atmospheres. The high proton conductivity of BaSc0.8Mo0.2O2.8 at intermediate and low temperatures is attributable to high proton concentration, high proton mobility due to reduced proton trapping, and three-dimensional proton diffusion in the cubic perovskite stabilized by the Mo-doping into BaScO2.5. The donor doping into the perovskite with disordered intrinsic oxygen vacancies would be a viable strategy towards high proton conductivity at intermediate and low temperatures.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。