Sulforaphane Inhibits MGO-AGE-Mediated Neuroinflammation by Suppressing NF-κB, MAPK, and AGE-RAGE Signaling Pathways in Microglial Cells

萝卜硫素通过抑制小胶质细胞中的 NF-κB、MAPK 和 AGE-RAGE 信号通路来抑制 MGO-AGE 介导的神经炎症

阅读:4
作者:Lalita Subedi, Jae Hyuk Lee, Bhakta Prasad Gaire, Sun Yeou Kim

Abstract

Advanced glycation end products (AGEs) are produced through the binding of glycated protein or lipid with sugar, and they are known to be involved in the pathogenesis of both age-dependent and independent neurological complications. Among dicarbonyl compounds, methylglyoxal (MGO), which is produced from glucose breakdown, is a key precursor of AGE formation and neurotoxicity. Several studies have shown the toxic effects of bovine serum albumin (BSA)-AGE (prepared with glucose, sucrose or fructose) both in in vitro and in vivo. In fact, MGO-derived AGEs (MGO-AGEs) are highly toxic to neurons and other cells of the central nervous system. Therefore, we aimed to investigate the role of MGO-AGEs in microglial activation, a key inflammatory event, or secondary brain damage in neuroinflammatory diseases. Interestingly, we found that sulforaphane (SFN) as a potential candidate to downregulate neuroinflammation induced by MGO-AGEs in BV2 microglial cells. SFN not only inhibited the formation of MGO-AGEs, but it did not show breaking activity on the MGO-mediated AGEs cross-links with protein, indicating that SFN could potentially trap MGO or inhibit toxic AGE damage. In addition, SFN significantly attenuated the production of neuroinflammatory mediators induced by MGO-AGEs in BV2 microglial cells. SFN also lowered the expression levels of AGE receptor (RAGE) in microglial cells, suggesting that SFN could downregulate MGO-AGE-mediated neurotoxicity at the receptor activation level. Altogether, our current study revealed that SFN might show neuropharmacological potential for downregulating MGO-AGEs-mediated neuronal complications thorough attenuating AGE formation and neuroinflammatory responses induced by MGO-AGEs in vitro.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。