RhoA phosphorylation induces Rac1 release from guanine dissociation inhibitor alpha and stimulation of vascular smooth muscle cell migration

RhoA 磷酸化诱导鸟嘌呤解离抑制剂 α 释放 Rac1 并刺激血管平滑肌细胞迁移

阅读:8
作者:Malvyne Rolli-Derkinderen, Gilles Toumaniantz, Pierre Pacaud, Gervaise Loirand

Abstract

Although overactivation of RhoA is recognized as a common component of vascular disorders, the molecular mechanisms regulating RhoA activity in vascular smooth muscle cells (VSMC) are still unclear. We have previously shown that in VSMC, RhoA is phosphorylated on Ser188 by nitric oxide (NO)-stimulated cGMP-dependent kinase (PKG), which leads to RhoA-Rho kinase pathway inhibition. In this study, we showed that expression of phosphoresistant RhoA mutants prevented the stimulation of VSMC migration and adhesion induced by NO-PKG pathway activation. In contrast, under basal conditions, phosphomimetic RhoA mutants stimulated VSMC adhesion and migration through a signaling pathway requiring Rac1 and the Rho exchange factor Vav3. RhoA phosphorylation or phosphomimetic RhoA mutants induced Rac1 activation but did not activate Vav3. Indeed, phosphorylated RhoA or phosphomimetic mutants trapped guanine dissociation inhibitor α (GDIα), leading to the release of Rac1 and its translocation to the membrane, where it was then activated by the basal Vav3 nucleotide exchange activity. In vivo, RhoA phosphorylation induced by PKG activation in the aortas of rats treated with sildenafil induced dissociation of Rac1 from GDIα and activation of the Rac1 signaling pathway. These results suggest that the phosphorylation of RhoA represents a novel potent and physiological GDIα displacement factor that leads to Rac1 activation and regulation of Rac1-dependent VSMC functions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。