GAS6 attenuates sepsis-induced cardiac dysfunction through NLRP3 inflammasome-dependent mechanism

GAS6 通过 NLRP3 炎症小体依赖机制减轻脓毒症引起的心脏功能障碍

阅读:8
作者:Ting Ji, Qiong Liu, Liming Yu, Wangrui Lei, Chenxi Lu, Junmin Chen, Xin Xie, Zhenhua Zhang, Zhenxing Liang, Chao Deng, Ying Chen, Jun Ren, Yang Yang

Abstract

Sepsis is a major health threat and often results in heart failure. Growth arrest-specific gene 6 (GAS6), a 75-kDa vitamin K-dependent protein, participates in immune regulation and inflammation through binding to AXL (the TAM receptor family). This study was designed to examine the myocardial regulatory role of GAS6 in sepsis. Serum GAS6 levels were increased in septic patients and mice while myocardial GAS6 levels were decreased in septic mice. Single-cell RNA sequencing further revealed a decline in GAS6 levels of nearly all cell clusters including cardiomyocytes. GAS6 overexpression via adeno-associated virus 9 (AAV9) overtly improved cardiac dysfunction in cecum ligation and puncture (CLP)-challenged mice, along with alleviated mitochondrial injury, endoplasmic reticulum stress, oxidative stress, and apoptosis. However, GAS6-elicited beneficial effects were removed by GAS6 knockout. The in vitro study was similar to these findings. Our data also noted a downstream effector role for NLRP3 in GAS6-initiated myocardial response. GAS6 knockout led to elevated levels of NLRP3, the effect of which was reconciled by GAS6 overexpression. Taken together, these results revealed the therapeutical potential of targeting GAS6/AXL-NLRP3 signaling in the management of heart anomalies in sepsis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。