Identification of Prognostic Metabolism-Related Genes in Clear Cell Renal Cell Carcinoma

透明细胞肾细胞癌中预后代谢相关基因的鉴定

阅读:10
作者:Yusa Chen, Yumei Liang, Ying Chen, Shaxi Ouyang, Kanghan Liu, Wei Yin

Background

Clear cell renal cell carcinoma (ccRCC) is a cancer with abnormal metabolism. The

Conclusion

We established a new Riskscore model for the prognosis of ccRCC based on metabolism. The genes in the model provided several novel targets for the study of ccRCC.

Methods

The data of ccRCC patients were downloaded from the TCGA and the GEO databases and clustered using the nonnegative matrix factorization method. The limma software package was used to analyze differences in gene expression. A random forest model was used to screen for important genes. A novel Riskscore model was established using multivariate regression. The model was evaluated based on the metabolic pathway, immune infiltration, immune checkpoint, and clinical characteristics.

Results

According to metabolism-related genes, kidney clear cell carcinoma (KIRC) datasets downloaded from TCGA were clustered into two groups and showed significant differences in prognosis and immune infiltration. There were 667 differentially expressed genes between the two clusters, of which 408 were screened by univariate analysis. Finally, 12 differentially expressed genes (MDK, SLC1A1, SGCB, C4orf3, MALAT1, PILRB, IGHG1, FZD1, IFITM1, MUC20, KRT80, and SALL1) were filtered out using the random forest model. The model of Riskscore was obtained by multiplying the expression levels of these 12 genes with the corresponding coefficients of the multivariate regression. We found that the Riskscore correlated with the expression of these 12 genes; the high Riskscore matched the low survival rate verified in the verification set. The analysis found that the Riskscore model was associated with most of the metabolic processes, immune infiltration of cells such as plasma cells, immune checkpoints such as PD-1, and clinical characteristics such as M stage.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。