Tuning the surface charge of phospholipid bilayers inhibits insulin fibrilization

调节磷脂双层的表面电荷可抑制胰岛素纤维化

阅读:6
作者:Victoria T Reichelderfer, Andres F Chaparro Sosa, Joel L Kaar, Daniel K Schwartz

Abstract

The interactions between proteins and materials, in particular lipid bilayers, have been studied extensively for their relevance in diseases and for the formulation of protein-based therapeutics and vaccines. However, the precise rules by which material properties induce favorable or unfavorable structural states in biomolecules are incompletely understood, and as a result, the rational design of materials remains challenging. Here, we investigated the influence of lipid bilayers (in the form of small unilamellar vesicles) on the formation of insulin amyloid fibrils using a fibril-specific assay (thioflavin T), polyacrylamide gel electrophoresis, and circular dichroism spectroscopy. Lipid bilayers composed of equal mixtures of cationic and anionic lipids effectively inhibited fibril formation and stabilized insulin in its native conformation. However, other lipid bilayer compositions failed to inhibit fibril formation or even destabilized insulin, exacerbating fibrilization and/or non-amyloid aggregation. Our findings suggest that electrostatic interactions with lipid bilayers can play a critical role in stabilizing or destabilizing insulin, and preventing the conversion of insulin to its amyloidogenic, disease-associated state.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。