HISTONE DEACETYLASE 6 suppresses salicylic acid biosynthesis to repress autoimmunity

组蛋白去乙酰化酶 6 抑制水杨酸生物合成以抑制自身免疫

阅读:7
作者:Zhenjiang Wu, Lei He, Ye Jin, Jing Chen, Huazhong Shi, Yizhong Wang, Wannian Yang

Abstract

Salicylic acid (SA) plays an important role for plant immunity, especially resistance against biotrophic pathogens. SA quickly accumulates after pathogen attack to activate downstream immunity events and is normally associated with a tradeoff in plant growth. Therefore, the SA level in plants has to be strictly controlled when pathogens are absent, but how this occurs is not well understood. Previously we found that in Arabidopsis (Arabidopsis thaliana), HISTONE DEACETYLASE 6 (HDA6), a negative regulator of gene expression, plays an essential role in plant immunity since its mutation allele shining 5 (shi5) exhibits autoimmune phenotypes. Here we report that this role is mainly through suppression of SA biosynthesis: first, the autoimmune phenotypes and higher resistance to Pst DC3000 of shi5 mutants depended on SA; second, SA significantly accumulated in shi5 mutants; third, HDA6 repressed SA biosynthesis by directly controlling the expression of CALMODULIN BINDING PROTEIN 60g (CBP60g) and SYSTEMIC ACQUIRED RESISTANCE DEFICIENT 1 (SARD1). HDA6 bound to the chromatin of CBP60g and SARD1 promoter regions, and histone H3 acetylation was highly enriched within these regions. Furthermore, the transcriptome of shi5 mutants mimicked that of plants treated with exogenous SA or attacked by pathogens. All these data suggest that HDA6 is vital for plants in finely controlling the SA level to regulate plant immunity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。