The histone variant H3.3 promotes the active chromatin state to repress flowering in Arabidopsis

组蛋白变体 H3.3 促进染色质活性状态,从而抑制拟南芥开花

阅读:6
作者:Fengyue Zhao, Huairen Zhang, Ting Zhao, Zicong Li, Danhua Jiang

Abstract

The histone H3 family in animals and plants includes replicative H3 and nonreplicative H3.3 variants. H3.3 preferentially associates with active transcription, yet its function in development and transcription regulation remains elusive. The floral transition in Arabidopsis (Arabidopsis thaliana) involves complex chromatin regulation at a central flowering repressor FLOWERING LOCUS C (FLC). Here, we show that H3.3 upregulates FLC expression and promotes active histone modifications histone H3 lysine 4 trimethylation (H3K4me3) and histone H3 lysine 36 trimethylation (H3K36me3) at the FLC locus. The FLC activator FRIGIDA (FRI) directly mediates H3.3 enrichment at FLC, leading to chromatin conformation changes and further induction of active histone modifications at FLC. Moreover, the antagonistic H3.3 and H2A.Z act in concert to activate FLC expression, likely by forming unstable nucleosomes ideal for transcription processing. We also show that H3.3 knockdown leads to H3K4me3 reduction at a subset of particularly short genes, suggesting the general role of H3.3 in promoting H3K4me3. The finding that H3.3 stably accumulates at FLC in the absence of H3K36me3 indicates that the H3.3 deposition may serve as a prerequisite for active histone modifications. Our results reveal the important function of H3.3 in mediating the active chromatin state for flowering repression.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。