Non-enzymatic role of SOD1 in intestinal stem cell growth

SOD1 在肠道干细胞生长中的非酶作用

阅读:5
作者:Ying-Chao Wang #, Xiao-Xu Leng #, Cheng-Bei Zhou #, Shi-Yuan Lu, Chi Kwan Tsang, Jie Xu, Ming-Ming Zhang, Hui-Min Chen, Jing-Yuan Fang

Abstract

Superoxide dismutase 1 (SOD1) modulates intestinal barrier integrity and intestinal homeostasis as an antioxidant enzyme. Intestinal homeostasis is maintained by the intestinal stem cells (ISCs). However, whether and how SOD1 regulates ISCs is unknown. In this study, we established intestinal organoids from tamoxifen-inducible intestinal epithelial cell-specific Sod1 knockout (Sod1f/f; Vil-creERT2) mice. We found that loss of Sod1 in organoids suppressed the proliferation and survival of cells and Lgr5 gene expression. SOD1 is known for nearly half a century for its canonical role as an antioxidant enzyme. We identified its enzyme-independent function in ISC: inhibition of SOD1 enzymatic activity had no impact on organoid growth, and enzymatically inactive Sod1 mutants could completely rescue the growth defects of Sod1 deficient organoids, suggesting that SOD1-mediated ISC growth is independent of its enzymatic activity. Moreover, Sod1 deficiency did not affect the ROS levels of the organoid, but induced the elevated WNT signaling and excessive Paneth cell differentiation, which mediates the occurrence of growth defects in Sod1 deficient organoids. In vivo, epithelial Sod1 loss induced a higher incidence of apoptosis in the stem cell regions and increased Paneth cell numbers, accompanied by enhanced expression of EGFR ligand Epiregulin (EREG) in the stromal tissue, which may compensate for Sod1 loss and maintain intestinal structure in vivo. Totally, our results show a novel enzyme-independent function of SOD1 in ISC growth under homeostasis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。