The LRP1/CD91 ligands, tissue-type plasminogen activator, α2-macroglobulin, and soluble cellular prion protein have distinct co-receptor requirements for activation of cell-signaling

LRP1/CD91 配体、组织型纤溶酶原激活剂、α2-巨球蛋白和可溶性细胞朊病毒蛋白对激活细胞信号传导有不同的辅助受体要求

阅读:6
作者:Elisabetta Mantuano, Pardis Azmoon, Michael A Banki, Cory B Gunner, Steven L Gonias

Abstract

LDL Receptor-related Protein-1 (LRP1/CD91) binds diverse ligands, many of which activate cell-signaling. Herein, we compared three LRP1 ligands that inhibit inflammatory responses triggered by lipopolysaccharide (LPS), including: enzymatically-inactive tissue-type plasminogen activator (EI-tPA); activated α2-macroglobulin (α2M); and S-PrP, a soluble derivative of nonpathogenic cellular prion protein (PrPC). In bone marrow-derived macrophages, the N-methyl-D-aspartate receptor was essential for all three LRP1 ligands to activate cell-signaling and inhibit LPS-induced cytokine expression. Intact lipid rafts also were essential. Only α2M absolutely required LRP1. LRP1 decreased the EI-tPA concentration required to activate cell-signaling and antagonize LPS but was not essential, mimicking its role as a S-PrP co-receptor. Membrane-anchored PrPC also functioned as a co-receptor for EI-tPA and α2M, decreasing the ligand concentration required for cell-signaling and LPS antagonism; however, when the concentration of EI-tPA or α2M was sufficiently increased, cell-signaling and LPS antagonism occurred independently of PrPC. S-PrP is the only LRP1 ligand in this group that activated cell-signaling independently of membrane-anchored PrPC. EI-tPA, α2M, and S-PrP inhibited LPS-induced LRP1 shedding from macrophages, a process that converts LRP1 into a pro-inflammatory product. Differences in the co-receptors required for anti-inflammatory activity may explain why LRP1 ligands vary in ability to target macrophages in different differentiation states.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。