Chronic Intestinal Inflammation Suppresses Brain Activity by Inducing Neuroinflammation in Mice

慢性肠道炎症通过诱发小鼠神经炎症来抑制大脑活动

阅读:5
作者:Jonathon Mitchell, Su Jin Kim, Cody Howe, Seulah Lee, Ji Yun Her, Marisa Patel, Gayoung Kim, Jaewon Lee, Eunok Im, Sang Hoon Rhee

Abstract

Chronic gut inflammation such as inflammatory bowel disease is believed to be associated with neurodegenerative diseases in humans. However, the direct evidence for and the underlying mechanism of this brain-gut interaction remain elusive. In this study, manganese-enhanced magnetic resonance imaging was used to assess functional brain activity from awake and freely moving mice with chronic colitis. Manganese ion uptake (indicative of Ca2+ influx into neuronal cells) and accumulation were reduced in the hippocampus of chronic colitis mice compared with control mice. Long-term memory declined and neuroinflammatory signals, including IL-1β production and activation of caspase-1, caspase-11, and gasdermin, were induced. High-mobility group box 1 (HMGB1) levels were elevated both in the serum and in the hippocampus; however, lipopolysaccharide (LPS) levels remained at low levels without significant changes in these samples. The blood-brain barrier permeability was increased in chronic colitis mice. In the presence of LPS, HMGB1 treatment induced the activation of caspase-11 and gasdermin in the mouse microglial cell line SIM-A9. These findings suggest that HMGB1 released from the inflamed intestine may move to the brain through the blood circulatory system; in conjunction with a low level of endogenous LPS, elevated HMGB1 can subsequently activate caspase-mediated inflammatory responses in the brain.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。