Autophagic degradation of IRF3 induced by the small-molecule auranofin inhibits its transcriptional and proapoptotic activities

小分子药物金诺芬诱导的IRF3自噬降解抑制了其转录和促凋亡活性。

阅读:2
作者:Anna Glanz ,Sukanya Chakravarty ,Shumin Fan ,Karan Chawla ,Gayatri Subramanian ,Tia Rahman ,Dean Walters ,Ritu Chakravarti ,Saurabh Chattopadhyay

Abstract

The ubiquitously expressed transcription factor interferon (IFN) regulatory factor 3 (IRF3) is critical for the induction of antiviral genes, e.g., type-I IFN. In addition to its transcriptional function, IRF3 also activates a nontranscriptional, proapoptotic signaling pathway. While the proapoptotic function of IRF3 protects against viral infections, it is also involved in harmful immune responses that trigger hepatocyte cell death and promote liver disease. Thus, we hypothesized that a small-molecule inhibitor of the proapoptotic activity of IRF3 could alleviate fatty-acid-induced hepatocyte cell death. We conducted a high-throughput screen, which identified auranofin as a small-molecule inhibitor of the proapoptotic activity of IRF3. In addition to the nontranscriptional apoptotic pathway, auranofin also inhibited the transcriptional activity of IRF3. Using biochemical and genetic tools in human and mouse cells, we uncovered a novel mechanism of action for auranofin, in which it induces cellular autophagy to degrade IRF3 protein, thereby suppressing IRF3 functions. Autophagy-deficient cells were unable to degrade IRF3 upon auranofin treatment, suggesting that the autophagic degradation of IRF3 is a novel approach to regulate IRF3 activities. Using a physiologically relevant in vitro model, we demonstrated that auranofin inhibited fatty-acid-induced apoptotic cell death of hepatocytes. In summary, auranofin is a novel inhibitor of IRF3 functions and may represent a potential therapeutic option in diseases where IRF3 is deleterious. Keywords: apoptosis; auranofin; autophagy; fatty liver disease; inflammatory genes;; innate immunity; interferon; interferon regulatory factor 3.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。