Aim of study
The purpose of this study is to investigate the effects of GSZD on peritoneal recruitment of neutrophils, production of proinflammatory mediators, activations of nuclear factor (NF)-κB and nucleotide oligomerization domain-like receptor protein-3 (NLRP3) inflammasome in mice with monosodium urate crystal (MSU)-induced peritonitis (MIP). Materials and
Conclusions
These results suggest that GSZD attenuates the MSU-induced inflammation through inhibiting the activations of NF-κB and NLRP3 inflammasome.
Methods
Mice were intragastrically administered with GSZD for 7 days. After the last administration, mice were intraperitoneally injected with MSU. Peritoneal exudates of mice were harvested, and total peritoneal cells were calculated. Levels of interleukin (IL)-1β, IL-6 and monocyte chemotactic protein (MCP)-1 in peritoneal exudates were tested by enzyme-linked immunosorbent assay. Expressions of IL-1β, NLRP3, cysteinyl aspartate specific proteinase (caspase)-1, apoptosis-associated speck-like protein containing the caspase activation and recruitment domain (ASC), phosphorylated (p)-p65, inhibitor of NF-κB (IκB)α, p-IκB kinase (IKK)β, nuclear p65, p-mitogen-activated protein kinases (MAPKs) in peritoneal cells were analyzed by Western blot. Binding activity of NF-κB to DNA was measured by a Trans AM™ kit for p65. Interaction between ASC and pro-caspase-1 was assessed by co-immunoprecipitation assay.
Results
Total peritoneal cells, levels of IL-1β, IL-6 and MCP-1 were significantly reduced by GSZD treatment in peritoneal exudates of MIP mice. As for the activation of NF-κB, GSZD treatment significantly reduced the levels of p-p65, p-IKKβ, nuclear p65 and p-MAPKs, enhanced the level of IκBα and abated the binding ability of NF-κB to DNA in peritoneal cells of MIP mice. As for the activation of NLRP3 inflammasome, GSZD treatment significantly reduced the levels of IL-1β, NLRP3 and caspase-1, and alleviated the interaction between ASC and pro-caspase-1 in peritoneal cells of MIP mice. Nevertheless, GSZD didn't remarkably change the level of ASC. Conclusions: These results suggest that GSZD attenuates the MSU-induced inflammation through inhibiting the activations of NF-κB and NLRP3 inflammasome.
