Electroacupuncture Inhibits Neuroinflammation Induced by Astrocytic Necroptosis Through RIP1/MLKL/TLR4 Pathway in a Mouse Model of Spinal Cord Injury

电针通过 RIP1/MLKL/TLR4 通路抑制脊髓损伤小鼠星形胶质细胞坏死性凋亡引起的神经炎症

阅读:5
作者:Hongdi Zhao #, Xiaoqin Zong #, Long Li, Na Li, Chunlei Liu, Wanchao Zhang, Juan Li, Cheng Yang, Siqin Huang

Abstract

Astrocytic necroptosis plays an essential role in the progression and regression of neurological disorders, which contributes to the neuroinflammation and disrupts neuronal regeneration and remyelination of severed axons. Electroacupuncture (EA), an effective therapeutic efficacy against spinal cord injury (SCI), has been proved to reduce neuronal cell apoptosis, inhibit inflammation, and prompt neural stem cell proliferation and differentiations. However, there have been few reports on whether EA regulate astrocytic necroptosis in SCI model. To investigate the effects of EA on astrocytic necroptosis and the mechanisms involved in the inhibition of astrocytic necroptosis after SCI in mice by EA, 8-week-old female C57BL/6 mice were subjected to SCI surgery and randomly divided into EA and SCI groups. Mice receiving sham surgery were included as sham group. "Jiaji" was selected as points for EA treatment, 10 min/day for 14 days. The in vitro data revealed that EA treatment significantly improved the nervous function and pathological changes after SCI. EA also reduced the number of GFAP/P-MLKL, GFAP/MLKL, GFAP/HMGB1, and Iba1/HMGB1 co-positive cells and inhibited the expressions of IL-6, IL-1β, and IL-33. The results indicate a significant reduction in inflammatory reaction and astrocytic necroptosis in mice with SCI by EA. Additionally, the expressions of RIP1, MLKL, and TLR4, which are associated with necroptosis, were found to be downregulated by EA. In this study, we confirmed that EA can inhibit neuroinflammation by reducing astrocytic necroptosis through downregulation of RIP1/MLKL/TLR4 pathway in mice with SCI.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。