Endoplasmic reticulum-quality control pathway and endoplasmic reticulum-associated degradation mechanism regulate the N-glycoproteins and N-glycan structures in the diatom Phaeodactylum tricornutum

内质网质量控制途径和内质网相关降解机制调控硅藻三角褐指藻的N-糖蛋白和N-糖结构

阅读:4
作者:Jichen Chen #, Hong Du #, Zidong Liu, Tangcheng Li, Hua Du, Wanna Wang, Muhammad Aslam, Weizhou Chen, Ping Li, Haodong Luo, Hao Fang, Xiaojuan Liu

Abstract

Tunicamycin inhibits the first step of protein N-glycosylation modification. However, the physiological, transcriptomic, and N-glycomic effects of tunicamycin on important marine diatom Phaeodactylum tricornutum are still unknown. In this study, comprehensive approaches were used to study the effects of tunicamycin stress. The results showed that cell growth and photosynthesis were significantly inhibited in P. tricornutum under the tunicamycin stress. The soluble protein content was significantly decreased, while the soluble sugar and neutral lipid were dramatically increased to orchestrate the balance of carbon and nitrogen metabolisms. The stress of 0.3 μg ml-1 tunicamycin resulted in the differential expression of ERQC and ERAD related genes. The upregulation of genes involved in ERQC pathway, the activation of anti-oxidases and the differential expression of genes related with ERAD mechanism might be important for maintaining homeostasis in cell. The identification of N-glycans, especially complex-type N-glycan structures enriched the N-glycan database of diatom P. tricornutum and provided important information for studying the function of N-glycosylation modification on proteins. As a whole, our study proposed working models of ERQC and ERAD will provide a solid foundation for further in-depth study of the related mechanism and the diatom expression system.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。