Berberine Attenuates Hyperuricemia by Regulating Urate Transporters and Gut Microbiota

小檗碱通过调节尿酸转运蛋白和肠道微生物群来减轻高尿酸血症

阅读:8
作者:Baixi Shan, Mingyu Wu, Ting Chen, Weiwei Tang, Ping Li, Jun Chen

Abstract

Hyperuricemia (HUA) and its associated metabolic diseases seriously threaten human health, and commensal microbiota has been identified as one of the environmental triggers of HUA. The role of berberine (BBR) in the treatment of HUA has begun to receive attention in recent years. However, how BBR modulates the microbiota to slow HUA progression is unclear. In this study, we showed that BBR alleviated potassium oxonate (PO)-induced HUA in mice by suppressing the expression of xanthine oxidase (XOD) in the liver and urate transporter 1 (URAT1) and glucose transporter 9 (GLUT9) in the kidney. The BBR also improved renal inflammation by inhibiting the expression of TNF-[Formula: see text], IL-1[Formula: see text], and caspase-1. Subsequently, we evaluated whether the observed anti-HUA effects of BBR were associated with changes in gut microbial structure in mice. 16S rRNA sequencing data showed that BBR significantly altered the community compositional structure of the gut microbiota. Specifically, BBR enriched the abundance of Coprococcus, Bacteroides, Akkermansia, and Prevotella. Antibiotic treatment can reverse the anti-HUA effects of BBR that further supports the role of the gut microbiota. In conclusion, our study provides evidence that BBR ameliorates PO-induced HUA by modulating the gut microbiota.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。