Genoarchitectonics of the larval zebrafish diencephalon

斑马鱼幼虫间脑的基因构造

阅读:4
作者:Mario F Wullimann, Nouwar Mokayes, Inbal Shainer, Enrico Kuehn, Herwig Baier

Abstract

The brain is spatially organized into subdivisions, nuclei and areas, which often correspond to functional and developmental units. A segmentation of brain regions in the form of a consensus atlas facilitates mechanistic studies and is a prerequisite for sharing information among neuroanatomists. Gene expression patterns objectively delineate boundaries between brain regions and provide information about their developmental and evolutionary histories. To generate a detailed molecular map of the larval zebrafish diencephalon, we took advantage of the Max Planck Zebrafish Brain (mapzebrain) atlas, which aligns hundreds of transcript and transgene expression patterns in a shared coordinate system. Inspection and co-visualization of close to 50 marker genes have allowed us to resolve the tripartite prosomeric scaffold of the diencephalon at unprecedented resolution. This approach clarified the genoarchitectonic partitioning of the alar diencephalon into pretectum (alar part of prosomere P1), thalamus (alar part of prosomere P2, with habenula and pineal complex), and prethalamus (alar part of prosomere P3). We further identified the region of the nucleus of the medial longitudinal fasciculus, as well as the posterior and anterior parts of the posterior tuberculum, as molecularly distinct basal parts of prosomeres 1, 2, and 3, respectively. Some of the markers examined allowed us to locate glutamatergic, GABAergic, dopaminergic, serotoninergic, and various neuropeptidergic domains in the larval zebrafish diencephalon. Our molecular neuroanatomical approach has thus (1) yielded an objective and internally consistent interpretation of the prosomere boundaries within the zebrafish forebrain; has (2) produced a list of markers, which in sparse combinations label the subdivisions of the diencephalon; and is (3) setting the stage for further functional and developmental studies in this vertebrate brain.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。