Metformin Inhibits the Expression of Biomarkers of Fibrosis of EPCs In Vitro

二甲双胍体外抑制 EPC 纤维化生物标志物的表达

阅读:3
作者:Fei Han, Jie Shu, Shunjun Wang, Can-E Tang, Fanyan Luo

Abstract

Endothelial progenitor cells (EPCs) are a group of circulating cells with important functions in vascular repair and treatment of cardiovascular diseases. However, in patients with atrial fibrillation (AF), the number and function of EPCs reportedly are decreased. TGF-β is highly expressed in AF patients. In this study, we examined the effect of TGF-β1 on EPCs and the therapeutic outcome of metformin treatment on TGF-β1-induced EPCs. EPCs were induced with TGF-β1 at different concentrations (5 ng/ml, 10 ng/ml, and 20 ng/ml) for 48 h followed by western blot, qPCR, and immunofluorescence analyses to investigate changes in the levels of the fibrosis-related proteins, α-SMA, Col I, Col III, CTGF, and MMP-1. Live-dead cell staining was used to evaluate cell apoptosis. Compared with the control, TGF-β1 treatment significantly (p < 0.05) enhanced the levels of α-SMA, Col I, Col III, CTGF, and MMP-1 in a dose-dependent manner. The most effective concentration of TGF-β1 (20 ng/ml) was then used to induce fibrosis biomarker expression in EPCs, followed by treatment with metformin at different concentrations (0.5, 1, and 2 mmol/l). Metformin treatment suppressed TGF-β-induced expression of all above factors, with the effect at 2 mmol/l being significant (p < 0.05). Live-dead cell staining showed no difference among the control, TGF-β1-treated, and metformin-treated groups. In conclusion, our study showed that TGF-β1 induces the expression of fibrosis biomarkers in EPCs, which is attenuated by treatment with metformin. Thus, metformin may have therapeutic potential for improving EPC function in cardiovascular diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。