Evodiamine induces reactive oxygen species-dependent apoptosis and necroptosis in human melanoma A-375 cells

吴茱萸碱诱导人黑色素瘤A-375细胞活性氧依赖性凋亡和坏死性凋亡

阅读:4
作者:Ning Liu, Yongxi Li, Guanzhi Chen, Keli Ge

Abstract

Melanoma is a common solid malignant tumor with a high frequency of metastasis and relapse. Evodiamine (EVO), a natural small molecule, has recently attracted considerable attention due to its pharmacological action, including its anticancer effects. However, the mechanism of the cytotoxic effect exerted by EVO on tumor cells is not yet fully understood. The present study aimed to evaluate the antitumor effects of evodiamine in human melanoma A-375 cells. The results demonstrated that EVO inhibited cell proliferation and induced cell cycle arrest at the G2/M stage in human melanoma A-375 cells. The results also revealed that EVO exposure induced the activation of caspase-3, caspase-9 and poly (ADP-ribose) polymerase 1, as well as mitochondrial membrane potential dissipation in a time-dependent manner, indicating that EVO induced intrinsic apoptosis in A-375 cells. Furthermore, the results revealed that receptor-interacting serine/threonine kinase (RIP) and RIP3 were sequentially activated, suggesting that necroptosis may also be involved in EVO-induced cell death in A-375 cells. In addition, co-treatment with catalase was demonstrated to significantly attenuate the EVO-induced cell death in A-375 cells, indicating that reactive oxygen species (ROS) may serve an important role in EVO-induced cell death. In conclusion, the results of the present study unveiled a novel mechanism of drug action by EVO in human melanoma cells and suggested its potential value in treating human melanoma by inducing cell death via ROS activation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。