Extracellular vesicles derived from monomeric α-synuclein-treated microglia ameliorate neuroinflammation by delivery of miRNAs targeting PRAK

单体 α-突触核蛋白处理的小胶质细胞产生的细胞外囊泡通过递送靶向 PRAK 的 miRNA 来改善神经炎症

阅读:7
作者:Na Li, Yang Huang, Yufeng Wu, Qilong Wang, Pengyu Ji

Abstract

Parkinson's disease (PD) is characterized by the formation of Lewy body, which mainly contains misfolded α-synuclein. Microglial activation plays a role in neurodegeneration. The pathologically oligomeric α-synuclein promotes inflammatory microglia, while physiologically monomeric α-synuclein induces anti-inflammatory microglia, the relationship between these two forms in activating microglia and the molecular mechanism is essentially unknown. In this study, using in vivo and in vitro models, we challenged primary or BV2 microglia with exogenous stimuli including α-synuclein. We examined microglial activation and the underlying mechanism by Western blot, RT-PCR, ELISA, IF, FCM, miRNA sequencing and bioinformatic analysis. Oligomeric α-synuclein activatedmicroglia via theinvolvement of the PRAK/MK5 pathway. The specific PRAK inhibitor GLPG0259 could mitigate microglial activation insulted by oligomeric α-synuclein. Monomeric α-synuclein regulated theanti-inflammatory microglia by delivering microglia-derived extracellular vesicles (EVs) in vitro and in vivo. Furthersequencingand bioinformatic analysis of microglial EVs-associated miRNAs indicatedthatmost of these miRNAs targeted PRAK. These results suggest that PRAK serves as an intersection in microglial activation when challenged with conformationally different α-synuclein. EVs derived from microglia treated with monomeric α-synuclein promote anti-inflammatory microglia by delivering miRNAs that target PRAK into recipient microglia.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。