Estrogen receptor α promotes Cav1.2 ubiquitination and degradation in neuronal cells and in APP/PS1 mice

雌激素受体 α 促进神经元细胞和 APP/PS1 小鼠中的 Cav1.2 泛素化和降解

阅读:6
作者:Yu-Jie Lai, Bing-Lin Zhu, Fei Sun, Dong Luo, Yuan-Lin Ma, Bio Luo, Jing Tang, Ming-Jian Xiong, Lu Liu, Yan Long, Xiao-Tong Hu, Ling He, Xiao-Juan Deng, John H Zhang, Jian Yang, Zhen Yan, Guo-Jun Chen

Abstract

Cav1.2 is the pore-forming subunit of L-type voltage-gated calcium channel (LTCC) that plays an important role in calcium overload and cell death in Alzheimer's disease. LTCC activity can be regulated by estrogen, a sex steroid hormone that is neuroprotective. Here, we investigated the potential mechanisms in estrogen-mediated regulation of Cav1.2 protein. We found that in cultured primary neurons, 17β-estradiol (E2) reduced Cav1.2 protein through estrogen receptor α (ERα). This effect was offset by a proteasomal inhibitor MG132, indicating that ubiquitin-proteasome system was involved. Consistently, the ubiquitin (UB) mutant at lysine 29 (K29R) or the K29-deubiquitinating enzyme TRAF-binding protein domain (TRABID) attenuated the effect of ERα on Cav1.2. We further identified that the E3 ligase Mdm2 (double minute 2 protein) and the PEST sequence in Cav1.2 protein played a role, as Mdm2 overexpression and the membrane-permeable PEST peptides prevented ERα-mediated Cav1.2 reduction, and Mdm2 overexpression led to the reduced Cav1.2 protein and the increased colocalization of Cav1.2 with ubiquitin in cortical neurons in vivo. In ovariectomized (OVX) APP/PS1 mice, administration of ERα agonist PPT reduced cerebral Cav1.2 protein, increased Cav1.2 ubiquitination, and improved cognitive performances. Taken together, ERα-induced Cav1.2 degradation involved K29-linked UB chains and the E3 ligase Mdm2, which might play a role in cognitive improvement in OVX APP/PS1 mice.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。