NMDA receptor-dependent presynaptic inhibition at the calyx of Held synapse of rat pups

大鼠幼崽 Held 突触萼的 NMDA 受体依赖性突触前抑制

阅读:10
作者:Tomoko Oshima-Takago, Hideki Takago

Abstract

N-Methyl-d-aspartate receptors (NMDARs) play diverse roles in synaptic transmission, synaptic plasticity, neuronal development and neurological diseases. In addition to their postsynaptic expression, NMDARs are also expressed in presynaptic terminals at some central synapses, and their activation modulates transmitter release. However, the regulatory mechanisms of NMDAR-dependent synaptic transmission remain largely unknown. In the present study, we demonstrated that activation of NMDARs in a nerve terminal at a central glutamatergic synapse inhibits presynaptic Ca2+ currents (ICa) in a GluN2C/2D subunit-dependent manner, thereby decreasing nerve-evoked excitatory postsynaptic currents. Neither presynaptically loaded fast Ca2+ chelator BAPTA nor non-hydrolysable GTP analogue GTPγS affected NMDAR-mediated ICa inhibition. In the presence of a glutamate uptake blocker, the decline in ICa amplitude evoked by repetitive depolarizing pulses at 20 Hz was attenuated by an NMDAR competitive antagonist, suggesting that endogenous glutamate has a potential to activate presynaptic NMDARs. Moreover, NMDA-induced inward currents at a negative holding potential (-80 mV) were abolished by intra-terminal loading of the NMDAR open channel blocker MK-801, indicating functional expression of presynaptic NMDARs. We conclude that presynaptic NMDARs can attenuate glutamate release by inhibiting voltage-gated Ca2+ channels at a relay synapse in the immature rat auditory brainstem.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。