Ferredoxin reductase is critical for p53-dependent tumor suppression via iron regulatory protein 2

铁氧还蛋白还原酶通过铁调节蛋白 2 对 p53 依赖性肿瘤抑制至关重要

阅读:8
作者:Yanhong Zhang, Yingjuan Qian, Jin Zhang, Wensheng Yan, Yong-Sam Jung, Mingyi Chen, Eric Huang, Kent Lloyd, Yuyou Duan, Jian Wang, Gang Liu, Xinbin Chen

Abstract

Ferredoxin reductase (FDXR), a target of p53, modulates p53-dependent apoptosis and is necessary for steroidogenesis and biogenesis of iron-sulfur clusters. To determine the biological function of FDXR, we generated a Fdxr-deficient mouse model and found that loss of Fdxr led to embryonic lethality potentially due to iron overload in developing embryos. Interestingly, mice heterozygous in Fdxr had a short life span and were prone to spontaneous tumors and liver abnormalities, including steatosis, hepatitis, and hepatocellular carcinoma. We also found that FDXR was necessary for mitochondrial iron homeostasis and proper expression of several master regulators of iron metabolism, including iron regulatory protein 2 (IRP2). Surprisingly, we found that p53 mRNA translation was suppressed by FDXR deficiency via IRP2. Moreover, we found that the signal from FDXR to iron homeostasis and the p53 pathway was transduced by ferredoxin 2, a substrate of FDXR. Finally, we found that p53 played a role in iron homeostasis and was required for FDXR-mediated iron metabolism. Together, we conclude that FDXR and p53 are mutually regulated and that the FDXR-p53 loop is critical for tumor suppression via iron homeostasis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。