Phospholipase C, Ca2+, and calmodulin signaling are required for 5-HT2A receptor-mediated transamidation of Rac1 by transglutaminase

磷脂酶 C、Ca2+ 和钙调蛋白信号传导是 5-HT2A 受体介导的转谷氨酰胺酶对 Rac1 进行转酰胺基化所必需的

阅读:5
作者:Ying Dai, Nichole L Dudek, Qian Li, Nancy A Muma

Conclusions

These results indicate that 5-HT(2A) receptor-coupled PLC activation and subsequent Ca(2+) and CaM signaling are necessary for TGase-catalyzed Rac1 transamidation, and an increase in intracellular Ca(2+) is sufficient to induce Rac1 transamidation.

Methods

A1A1v cells were pretreated with pharmacological inhibitors of phospholipase C (PLC) or calmodulin (CaM), and then stimulated by the 5-HT(2A) receptor agonist, 2,5-dimethoxy-4-iodoamphetamine (DOI). Intracellular Ca(2+) concentration and TGase-modified Rac1 transamidation were monitored. The effect of manipulation of intracellular Ca(2+) by a Ca(2+) ionophore or a chelating agent on Rac1 transamidation was also evaluated.

Results

In cells pretreated with a PLC inhibitor U73122, DOI-stimulated increases in the intracellular Ca(2+) concentration and TGase-modified Rac1 were significantly attenuated as compared to those pretreated with U73343, an inactive analog. The membrane-permeant Ca(2+) chelator, BAPTA-AM strongly reduced TGase-catalyzed Rac1 transamidation upon DOI stimulation. Conversely, the Ca(2+) ionophore ionomycin, at a concentration that induced an elevation of cytosolic Ca(2+) to a level comparable to cells treated with DOI, produced an increase in TGase-modified Rac1 without 5-HT(2A) receptor activation. Moreover, the CaM inhibitor W-7, significantly decreased Rac1 transamidation in a dose-dependent manner in DOI-treated cells. Conclusions: These results indicate that 5-HT(2A) receptor-coupled PLC activation and subsequent Ca(2+) and CaM signaling are necessary for TGase-catalyzed Rac1 transamidation, and an increase in intracellular Ca(2+) is sufficient to induce Rac1 transamidation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。