T-type calcium channel blockade induces apoptosis in C2C12 myotubes and skeletal muscle via endoplasmic reticulum stress activation

型钙通道阻滞剂通过内质网应激激活诱导 C2C12 肌管和骨骼肌细胞凋亡

阅读:5
作者:Mao Chen, Suting Li, Menglei Hao, Jue Chen, Zhihan Zhao, Shasha Hong, Jie Min, Jianming Tang, Ming Hu, Li Hong

Abstract

Loss of T-type calcium channel (TCC) function has been reported to result in decreased cell viability and impaired muscle regeneration, but the underlying mechanisms remain largely unknown. We previously found that expression of TCC is reduced in aged pelvic floor muscle of multiple vaginal delivery mice, and this is related to endoplasmic reticulum stress (ERS) activation and autophagy flux blockade. In the present work, we further investigated the effects of TCC function loss on C2C12 myotubes and skeletal muscle, which is mediated by promotion of ERS and ultimately contributes to mitochondrial-related apoptotic cell death. We found that application of a TCC inhibitor induced mitochondria-related apoptosis in a dose-dependent manner and also reduced mitochondrial transmembrane potential (MMP), induced mito-ROS generation, and enhanced expression of mitochondrial apoptosis proteins. Functional inhibition of TCC induced ERS, resulting in disorder of Ca2+ homeostasis in endoplasmic reticulum, and ultimately leading to cell apoptosis in C2C12 myotubes. Tibialis anterior muscles of T-type α1H channel knockout mice displayed a smaller skeletal muscle fiber size and elevated ERS-mediated apoptosis signaling. Our data point to a novel mechanism whereby TCC blockade leads to ERS activation and terminal mitochondrial-related apoptotic events in C2C12 myotubes and skeletal muscles.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。