Splicing factor Srsf5 deletion disrupts alternative splicing and causes noncompaction of ventricular myocardium

剪接因子 Srsf5 缺失会破坏选择性剪接并导致心室心肌不致密化

阅读:4
作者:Xiaoli Zhang, Ze Wang, Qing Xu, Yuhan Chen, Wen Liu, Tong Zhong, Hongchang Li, Chengshi Quan, Lingqiang Zhang, Chun-Ping Cui

Abstract

The serine/arginine-rich (SR) family of splicing factors plays important roles in mRNA splicing activation, repression, export, stabilization, and translation. SR-splicing factor 5 (SRSF5) is a glucose-inducible protein that promotes tumor cell growth. However, the functional role of SRSF5 in tissue development and disease remains unknown. Here, Srsf5 knockout (Srsf5 -/- ) mice were generated using CRISPR-Cas9. Mutant mice were perinatally lethal and exhibited cardiac dysfunction with noncompaction of the ventricular myocardium. The left ventricular internal diameter and volume were increased in Srsf5 -/- mice during systole. Null mice had abnormal electrocardiogram patterns, indicative of a light atrioventricular block. Mechanistically, Srsf5 promoted the alternative splicing of Myom1 (myomesin-1), a protein that crosslinks myosin filaments to the sarcomeric M-line. The switch between embryonic and adult isoforms of Myom1 could not be completed in Srsf5-deficient heart. These findings indicate that Srsf5-regulated alternative splicing plays a critical role during heart development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。