An Acidic Environment Induces APOL1-Associated Mitochondrial Fragmentation

酸性环境诱导 APOL1 相关的线粒体碎裂

阅读:11
作者:DengFeng Li, James A Snipes, Mariana Murea, Anthony J A Molina, Jasmin Divers, Barry I Freedman, Lijun Ma, Snezana Petrovic

Background

Apolipoprotein L1 gene (APOL1) G1 and G2 kidney-risk variants (KRVs) cause CKD in African Americans, inducing mitochondrial dysfunction. Modifying factors are required, because a minority of individuals with APOL1 high-risk genotypes develop nephropathy. Given that APOL1 function is pH-sensitive and the pH of the kidney interstitium is <7, we hypothesized the acidic kidney interstitium may facilitate APOL1 KRV-induced mitochondrial dysfunction.

Conclusion

Acidic pH facilitates early mitochondrial dysfunction induced by APOL1 G1 and G2 KRVs in HEK293 cells. We propose that the acidic kidney interstitium may play a role in APOL1-mediated mitochondrial pathophysiology and nephropathy.

Methods

Human embryonic kidney (HEK293) cells conditionally expressing empty vector (EV), APOL1-reference G0, and G1 or G2 KRVs were incubated in media pH 6.8 or 7.4 for 4, 6, or 8 h. Genotype-specific pH effects on mitochondrial length (µm) were assessed using confocal microscopy in live cells and Fiji derivative of ImageJ software with MiNA plug-in. Lower mitochondrial length indicated fragmentation and early dysfunction.

Results

After 6 h doxycycline (Dox) induction in pH 6.8 media, G2-expressing cells had shorter mitochondria (6.54 ± 0.40) than cells expressing EV (7.65 ± 0.72, p = 0.02) or G0 (7.46 ± 0.31, p = 0.003). After 8 h Dox induction in pH 6.8 media, both G1- (6.21 ± 0.26) and G2-expressing cells had shorter mitochondria (6.46 ± 0.34) than cells expressing EV (7.13 ± 0.32, p = 0.002 and p = 0.008, respectively) or G0 (7.22 ± 0.45, p = 0.003 and p = 0.01, respectively). Mitochondrial length in cells incubated in pH 7.4 media were comparable after 8 h Dox induction regardless of genotype. APOL1 mRNA expression and cell viability were comparable regardless of pH or genotype after 8 h Dox induction.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。