Phototaxis of the Unicellular Red Alga Cyanidioschyzon merolae Is Mediated by Novel Actin-Driven Tentacles

单细胞红藻 Cyanidioschyzon merolae 的趋光性由新型肌动蛋白驱动触手介导

阅读:4
作者:Sascha Maschmann, Karin Ruban, Johanna Wientapper, Wilhelm J Walter

Abstract

Phototaxis, which is the ability to move towards or away from a light source autonomously, is a common mechanism of unicellular algae. It evolved multiple times independently in different plant lineages. As of yet, algal phototaxis has been linked mainly to the presence of cilia, the only known locomotive organelle in unicellular algae. Red algae (Rhodophyta), however, lack cilia in all stages of their life cycle. Remarkably, multiple unicellular red algae like the extremophile Cyanidioschyzon merolae (C. merolae) can move towards light. Remarkably, it has remained unclear how C. merolae achieves movement, and the presence of a completely new mechanism has been suggested. Here we show that the basis of this movement are novel retractable projections, termed tentacles due to their distinct morphology. These tentacles could be reproducibly induced within 20 min by increasing the salt concentration of the culture medium. Electron microscopy revealed filamentous structures inside the tentacles that we identified to be actin filaments. This is surprising as C. merolae's single actin gene was previously published to not be expressed. Based on our findings, we propose a model for C. merolae's actin-driven but myosin-independent motility. To our knowledge, the described tentacles represent a novel motility mechanism.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。