Indoleamine 2,3-dioxygenase mediates the therapeutic effects of adipose-derived stromal/stem cells in experimental periodontitis by modulating macrophages through the kynurenine-AhR-NRF2 pathway

吲哚胺 2,3-双加氧酶通过犬尿氨酸-AhR-NRF2 通路调节巨噬细胞,介导脂肪来源的基质/干细胞在实验性牙周炎中的治疗作用

阅读:7
作者:Hanyue Li, Yu Yuan, Hongying Chen, Hongwei Dai, Jie Li

Conclusions

These findings suggested that ASCs can alleviate ligature-induced periodontitis through modulating macrophage polarization by the IDO-dependent Kyn-AhR-NRF2 pathway, uncovering a novel mechanism and providing a scientific basis for ASC-based therapy in experimental periodontitis.

Methods

Micro-CT was performed to evaluate the alveolar bone parameters following local injection of ASCs. Immunohistochemistry and immunofluorescence were employed to detect the expression of IL-1β, osteocalcin (OCN), nuclear factor (erythroid-derived 2)-like 2 (NRF2), and surface markers of macrophage polarization. Afterward, multiple reaction monitoring (MRM)-based targeted tryptophan metabolomic analysis was used to examine the ASC metabolites. Chromatin immunoprecipitation (ChIP)-qPCR assay was performed to investigate the direct binding of aryl hydrocarbon receptor (AhR) and NRF2.

Results

Alveolar bone loss was reduced, and the ratio of iNOS+/CD206+ macrophages was significantly decreased after ASC injection in the rat models of periodontitis. ASCs promoted NRF2 expression and activation in macrophages, while NRF2 silencing in macrophages blocked the regulation of ASCs on macrophages. Furthermore, the expression of indoleamine 2,3-dioxygenase (IDO) of ASCs in the inflammatory condition was high. The inhibitor of IDO, 1-methyltryptophan (1-MT), impaired the therapeutic effects of ASCs in experimental periodontitis and regulation of macrophage polarization. Mechanistically, kynurenine (Kyn), a metabolite of ASCs catalyzed by IDO, activated AhR and enhanced its binding to the promoter of NRF2, which stimulated M2 macrophage polarization. Conclusions: These findings suggested that ASCs can alleviate ligature-induced periodontitis through modulating macrophage polarization by the IDO-dependent Kyn-AhR-NRF2 pathway, uncovering a novel mechanism and providing a scientific basis for ASC-based therapy in experimental periodontitis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。