Background
miR-500a-3p has been demonstrated to be involved in the development, progression and metastasis in several human cancers. Constitutive activation of JAK/STAT3 signaling pathway has been reported to play an important role in the development and progression of hepatocellular carcinoma (HCC).The
Conclusion
our results uncover a novel mechanism by which miR-500a-3p promotes the stemness maintenance of cancer stem cell in HCC, suggesting that silencing miR-500a-3p may serve as a new therapeutic strategy in the treatment of hepatocellular carcinoma.
Methods
miR-500a-3p expression was examined by real-time PCR in 8 paired HCC tissues and individual 120 HCC tissues respectively. Statistical analysis was performed to explore the clinical correlation between miR-500a-3p expression and clinicopathological features and overall and relapse-free survival in HCC patients. In vitro and in vivo assays were performed to investigate the biological roles of miR-500a-3p in HCC. The bioinformatics analysis, real-time PCR, western blot and luciferase reporter assay were performed to discern and examine the relationship between miR-500a-3p and its potential targets. Clinical correlation of miR-500a-3p with its targets was examined in HCC tissues.
Results
miR-500a-3p is dramatically elevated in HCC tissues and cells and high expression of miR-500a-3p correlates with poor overall and relapse-free survival in HCC patients. Upregulating miR-500a-3p enhances, while silencing miR-500a-3p suppresses, the spheroid formation ability, fraction of side population and expression of cancer stem cell factors in vitro and tumorigenicity in vivo in HCC cells. Our findings further reveal miR-500a-3p promotes the cancer stem cell characteristics via targeting multiple negative regulators of JAK/STAT3 signaling pathway, including SOCS2, SOCS4 and PTPN11, leading to constitutive activation of STAT3 signaling. Moreover, the inhibitory effects of anti-miR-500a-3p on cancer stem cell phenotypes and activity of STAT3 signaling were reversed by silencing SOCS2, SOCS4 and PTPN11 in miR-500a-3p-downexpressing cells, respectively. Clinical correlation of miR-500a-3p with the targets was examined in human HCC tissues.
