Extracellular Matrix Abnormalities Contribute to Cardiac Insulin Resistance and Associated Dysfunction in Diet-induced Obese Mice

细胞外基质异常导致饮食诱导的肥胖小鼠的心脏胰岛素抵抗和相关功能障碍

阅读:5
作者:Vishal Musale, Colin E Murdoch, Ayman K Banah, Annie Hasib, Chandani K Hennayake, Bo Dong, Chim C Lang, David H Wasserman, Li Kang

Abstract

Increased deposition of extracellular matrix (ECM) components such as collagens and hyaluronan contributes to the pathogenesis of obesity-associated insulin resistance in muscle, liver, and adipose tissue. Despite the significance of the heart in cardiovascular and metabolic diseases, maladaptive ECM remodelling in obesity-associated cardiac insulin resistance and cardiac dysfunction has not been studied. Using genetic and pharmacological approaches in mice fed a high fat (HF) diet, we demonstrated a tight association between increased ECM deposition with cardiac insulin resistance. Increased collagen deposition by genetic deletion of matrix metalloproteinase 9 (MMP9) exacerbated cardiac insulin resistance and decreased hyaluronan deposition by treatment with PEGylated human recombinant hyaluronidase PH20 (PEGPH20) improved cardiac insulin resistance in obese mice. These relationships corresponded to functional changes in the heart. PEGPH20 treatment in obese mice ameliorated HF diet-induced abnormal myocardial remodelling. In addition to hyaluronan, increased collagen deposition is a characteristic of the obese mouse heart. We further demonstrated that pirfenidone, a clinically available anti-fibrotic medication which inhibits collagen expression, improved cardiac insulin resistance and cardiac function in obese mice. Our results provide important new insights into the role of ECM remodelling in the pathogenesis of cardiac insulin resistance and associated dysfunction in obesity of distinct mouse models. These findings support the novel therapeutic potential of targeting early cardiac ECM abnormalities in the prevention and treatment of obesity-related cardiovascular complications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。