Extracellular Heat Shock Protein 70 Increases the Glucocorticoid Receptor and Dual-Specificity Phosphatase 1 via Toll-like Receptor 4 and Attenuates Inflammation in Airway Epithelial Cells

细胞外热休克蛋白 70 通过 Toll 样受体 4 增加糖皮质激素受体和双特异性磷酸酶 1 并减轻气道上皮细胞的炎症

阅读:5
作者:Liang Zhou, Lei Fang, Michael Tamm, Daiana Stolz, Michael Roth

Abstract

Heat shock protein 70 (HSP70) regulates the ligand binding of the glucocorticoid receptor (GR). In asthma patients, heat treatment increased both the GR expression and secretion of extracellular HSP70 (eHSP70) by bronchial epithelial cells (EC). The objective of this study was to assess the effects of eHSP70 on GR expression and the GR-dependent regulation of immune response in human bronchial ECs. Cells were treated with either eHSP70 or transfected with an expression vector for intracellular HSP70 (iHSP70). Ribonucleic acid (RNA) and protein levels were detected by reverse transcriptase-polymerase chain reaction (RT-PCR), Western blotting, and immunofluorescence. Interleukin (IL-6 and IL-8) secretion was determined by enzyme linked immunosorbent assay (ELISA). The overexpression of iHSP70 decreased, while eHSP70 increased GR expression. In addition, eHSP70 increased the expression of the GR target dual-specificity phosphatase 1 (DUSP-1). In doing so, eHSP70 reduced the tumor growth factor (TGF)-β1-dependent activation of extracellular signal-regulated kinase (Erk)-1/2 and cyclic AMP response element binding protein (CREB) and the secretion of IL-6 and IL-8. Blocking the GR or Toll-like receptor 4 (TLR4) counteracted all eHSP70-induced effects. This study demonstrates a novel anti-inflammatory effect of eHSP70 by the signaling cascade of TLR4-GR-DUSP1, which inhibits TGF-β1-activated pro-inflammatory ERK1/2-CREB signaling and cytokine secretion. The findings suggest that eHSP70 might present a novel non-steroidal therapeutic strategy to control airway inflammation in asthma.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。