A high-resolution study of in situ surface-enhanced Raman scattering nanotag behavior in biological systems

生物系统中原位表面增强拉曼散射纳米标签行为的高分辨率研究

阅读:5
作者:Jing Wang, Will Anderson, Junrong Li, Lynlee L Lin, Yuling Wang, Matt Trau

Abstract

The colloidal stability of surface-enhanced Raman scattering (SERS) nanotags (Raman reporter-conjugated plasmonic nanoparticles) significantly affects the accuracy and reproducibility of SERS measurements, particularly in biological systems. Limited understanding of SERS nanotag stability may partly hamper the translation of SERS nanotags from the laboratory to their use in the clinic. In this contribution, we utilized differential centrifugal sedimentation (DCS), a reliable and straightforward technique to comprehensively analyze the colloidal stability of SERS nanotags in biological systems. Compared with other particle characterization techniques, DCS has been shown to have a unique advantage for high-resolution and high-throughput polydisperse particle characterization. DCS data revealed that the universal aggregation prevention practice of coating SERS nanotags with silica or bovine serum albumin layers did not sufficiently stabilize them in common measurement environments (e.g., 1 × PBS). Combined DCS and SERS measurements established a strong correlation between the degrees of nanotag aggregation and signal intensities, further reinforcing the necessity of characterizing SERS nanotag stability for every condition in which they are used. We also found that increasing the protein thickness by the inclusion of extra protein components in the detection environments and antibody functionalization can improve the stability of SERS nanotags. We believe that this study can provide guidelines on appropriate measurement techniques and particle design considerations to assess and improve SERS nanotag stability in complex biological systems.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。